Skip to article frontmatterSkip to article content

GitHub Badge PyPI version Build Status DOI

An open source python package to solve the 1D, steady, spherical slurry system outlined in Wong et al. (2021) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install -c jnywong nondim-slurry

Pip:

pip install nondim-slurry

Git:

Find the latest version of the repository here.

Package structure

slurpy/
  __init__.py
  coreproperties.py
  data_utils.py
  getparameters.py
  lookup.py
  lookupdata/
    denPREM.csv
    gravPREM.csv
    presPREM.csv
    radAK135.csv
    radPREM.csv
    vpAK135.csv
    vpPREM.csv
  plot_utils.py
  scripts/
    parameter_search.py
    seismic.py
    sensitivity.py
  slurry.py

Example scripts

  1. Open scripts/parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space
  1. Run parameter_search.py

  2. Admire the output:

Sensitivity study

  1. Open scripts/sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)
  1. Run sensitivity.py

  2. Admire the output:

Authors

  • Jenny Wong - University of Leeds - Institut de Physique du Globe de Paris - Institut des Sciences de la Terre
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

  • ERC SEIC
  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

🎉

References
  1. Wong, J. (2021). nondim-slurry_v0.1. Zenodo. 10.5281/ZENODO.4446750