NVIDIA Modulus Physics Informed Neural Networks (PINNs)

Jenny Wong | RSG Demos | 11 May 2023

What is Modulus? **Physics-informed and Data-driven Deep Learning**

General Workflow **User-friendly API**

2D Flow over a Chip Setup

- Solid chip, with size 1.0×0.6 and position (-1.0, -0.5), is placed in a 2D channel $(\text{domain } x \in [-2.5, 5], y \in [-0.5, 0.5])$
- Flow enters inlet with speed $u_{max} = 1.5 m/s$
- Flow exits outlet with pressure p = 0 Pa

2D Flow over a Chip Setup

- Top and bottom walls are no-slip
- Kinematic viscosity $\nu = 0.2 \ m/s^2$
- Density $\rho = 1 \ kg/m^3$

2D Flow over a Chip Solving parameterised geometries

h: 0.6, w: 1.0

- Parameterise chip dimensions
- Train on OpenFOAM simulations ("ground truth")
- Infer flow for any geometry combination

2D Flow over a Chip **Inverse Problem**

Objectives

- Assimilate data from OpenFOAM simulations

• Infer the viscosity given the flow field data (original value $\nu = 0.2 \ m/s^2$)