F-layer

Dynamics and implications for the Earth's core

Jenny Wong

ISTerre Université de Grenoble-Alpes

October 15, 2020

Year	Event
1953	Bullen alphabetises the structure of the Earth and names shell "F"

Year	Event
1953	Bullen alphabetises the structure of the Earth and names shell "F"
1972-73	King, Cleary & Haddon debunk the early F- layer

Year	Event
1953	Bullen alphabetises the structure of the Earth and names shell "F"
1972-73	King, Cleary & Haddon debunk the early F- layer
1981	Dziewonski <i>et al.</i> publish PREM

Seismic observations

Figure: Ohtaki et al. (2015)

Year	Event
1953	Bullen alphabetises the structure of the Earth and names shell "F"
1972-73	King, Cleary & Haddon debunk the early F- layer
1981	Dziewonski <i>et al.</i> publish PREM
1991	Souriau & Poupinet detect the modern F-layer with $d = 150 \text{ km}$

Figure: Ohtaki et al. (2015)

Year	Event
1953	Bullen alphabetises the structure of the Earth and names shell "F"
1972-73	King, Cleary & Haddon debunk the early F- layer
1981	Dziewonski <i>et al.</i> publish PREM
1991	Souriau & Poupinet detect the modern F-layer with $d = 150 \text{ km}$
onwards	Many studies support this observation with $150 \le \mathbf{d} \le 400 \text{ km}$

Seismic observations

Figure: Ohtaki et al. (2015)

Figure: Gubbins et al. (2008)

Density structure

► There is a discrepancy between $\Delta \rho_{mod}$ and $\Delta \rho_{bod}$

Figure: Gubbins et al. (2008)

- ► There is a discrepancy between Δρ_{mod} and Δρ_{bod}
- ▶ v²_p = K/p infers that a stably-stratified layer exists

Figure: Gubbins et al. (2008)

- ► There is a discrepancy between Δρ_{mod} and Δρ_{bod}
- ▶ v²_p = K/p infers that a stably-stratified layer exists
- How can light elements pass through the F-layer and out into the bulk of the liquid core?

Figure: Gubbins et al. (2008)

- ► There is a discrepancy between Δρ_{mod} and Δρ_{bod}
- ▶ v²_p = K/p infers that a stably-stratified layer exists
- How can light elements pass through the F-layer and out into the bulk of the liquid core?
- Layer cannot be a thermal boundary layer

Figure: Gubbins et al. (2008)

Possible dynamics

Figure: Thermochemical layer on the liquidus (Gubbins *et al.* 2008)

Possible dynamics

Figure:

Thermochemical layer on the liquidus (Gubbins *et al.* 2008)

Figure: Convective translation

(Alboussière *et al.* 2010)

Possible dynamics

Figure:

Thermochemical layer on the liquidus (Gubbins *et al.* 2008)

Figure: Convective translation

(Alboussière *et al.* 2010)

Figure: Slurry layer (Loper & Roberts 1978, Wong *et al.* 2018)

Model details

 Two component (iron and oxygen) two phase (solid and liquid) system

Model details

- Two component (iron and oxygen) two phase (solid and liquid) system
- Formation and transport of solid phase provides a way for light elements to pass through a stably-stratified layer

Model details

- Two component (iron and oxygen) two phase (solid and liquid) system
- Formation and transport of solid phase provides a way for light elements to pass through a stably-stratified layer
- Solid fraction is small

Governing equations

$$\begin{split} -\hat{v}\frac{\partial\hat{\xi}}{\partial\hat{r}} &= -\frac{1}{\hat{r}^{2}}\frac{\partial}{\partial\hat{r}}\left(\frac{Li_{p}R_{\rho}}{Li_{\xi}PeStR_{v}}\frac{\hat{g}\hat{\rho}\hat{r}^{2}}{\hat{\tau}}\exp\left[\frac{F\left(r_{sl}\hat{r}-r_{i}\right)}{d}\right]\right) \\ &+\hat{\xi}\frac{\partial\hat{j}}{\partial\hat{r}}+\hat{j}\frac{\partial\hat{\xi}}{\partial\hat{r}}+\frac{2}{\hat{r}}\hat{\xi}\hat{j}, \end{split} \tag{1}$$
$$-\hat{v}\frac{\partial\hat{T}}{\partial\hat{r}} &= \frac{Le}{Pe}\left(\frac{\partial^{2}\hat{T}}{\partial\hat{r}^{2}}+\frac{2}{r}\frac{\partial\hat{T}}{\partial\hat{r}}\right)+\frac{1}{St}\left(\frac{\partial\hat{j}}{\partial\hat{r}}+\frac{2}{\hat{r}}\hat{j}\right), \tag{2}$$
$$\frac{\partial\hat{T}}{\partial\hat{r}} &= -Li_{p}\hat{g}\hat{\rho}\hat{T}-\frac{Li_{\xi}St}{R_{\rho}}\hat{T}^{2}\frac{\partial\hat{\xi}}{\partial\hat{r}}. \tag{3}$$

where the dimensionless numbers are defined as

$$R_{\rho} = \frac{\rho_{sl}}{\rho_{s}^{-}}, \quad R_{v} = \frac{\Delta V_{Fe}^{s,l}}{\Delta V_{Fe,O}^{s,l}}, \quad Li_{\rho} \equiv \frac{\Delta V_{Fe}^{s,l} g_{sl} \rho_{sl} r_{sl}}{L}, \quad Li_{\xi} \equiv \frac{1000 R_{\xi_{sl}}}{a_{O} c_{\rho}},$$
$$Pe \equiv \frac{v_{f} r_{sl}}{D_{O}}, \quad St \equiv \frac{q_{sl}}{\rho_{s} v_{f} L}, \quad Le \equiv \frac{k}{\rho_{sl} c_{\rho} D_{O}}.$$
(4)

Boundary conditions

Geophysical constraints

	$\Delta \rho_{mod} (\mathrm{kgm}^{-3})$	$\Delta \rho_{bod} (\mathrm{kgm}^{-3})$	$Q_c (\mathrm{TW})$	$Q_i (\mathrm{TW})$
Maximum	1000	1100	15	2
Minimum	(Masters & Gubbins 2003) 600	(Tkalčić et al. 2009) 520 ± 240	(Lay <i>et al.</i> 2008) 5	(Pozzo <i>et al.</i> 2014) > 0
	(PREM)	(Koper & Dom- brovskya 2005)	(Lay <i>et al.</i> 2008)	

Results

 Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ

- Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ
- Temperature gradient is "locked" to the oxygen gradient via the liquidus condition

- Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ
- Temperature gradient is "locked" to the oxygen gradient via the liquidus condition
- Solid flux is negative downward towards ICB

- Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ
- Temperature gradient is "locked" to the oxygen gradient via the liquidus condition
- Solid flux is negative downward towards ICB

- Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ
- Temperature gradient is "locked" to the oxygen gradient via the liquidus condition
- Solid flux is negative downward towards ICB

- Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ
- Temperature gradient is "locked" to the oxygen gradient via the liquidus condition
- Solid flux is negative downward towards ICB

- Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ
- Temperature gradient is "locked" to the oxygen gradient via the liquidus condition
- Solid flux is negative downward towards ICB

- Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ
- Temperature gradient is "locked" to the oxygen gradient via the liquidus condition
- Solid flux is negative downward towards ICB
- Increasing layer thickness destabilises the layer

- Assume Stokes' flow to infer solid fraction, φ, from solid flux, ĵ
- Temperature gradient is "locked" to the oxygen gradient via the liquidus condition
- Solid flux is negative downward towards ICB
- Increasing layer thickness destabilises the layer

P wave speed

P wave speed

P wave speed

ICB density jump

$(\rm kgm^{-3})$	High <i>Le</i>	Low Le
$\rho_{\rm S}-\rho_{\rm SI}$	< 140	< 330
$\Delta \rho_{\textit{bod}}^{\textit{sl}}$	> 460	> 269
$\Delta\rho_{\rm bod}^{\rm obs}$	280 -	1100

Setup

 Numerical dynamo simulations using PARODY-JA Coupled Earth model (Aubert 2013)

Setup

- Numerical dynamo simulations using PARODY-JA Coupled Earth model (Aubert 2013)
- Simple F-layer by imposing a boundary condition on the buoyancy flux at r_f ≡ r_i + d (also impose adiabatic heat flux at CMB)

Setup

- Numerical dynamo simulations using PARODY-JA Coupled Earth model (Aubert 2013)
- Simple F-layer by imposing a boundary condition on the buoyancy flux at r_f ≡ r_i + d (also impose adiabatic heat flux at CMB)
- ► This introduces a control parameter f_i ≡ F_i/F_f < 0 that controls the strength of stratification in the F-layer...</p>

Setup

- Numerical dynamo simulations using PARODY-JA Coupled Earth model (Aubert 2013)
- Simple F-layer by imposing a boundary condition on the buoyancy flux at r_f ≡ r_i + d (also impose adiabatic heat flux at CMB)
- ► This introduces a control parameter f_i ≡ F_i/F_f < 0 that controls the strength of stratification in the F-layer...</p>
- ...and corresponds with the Brunt-Väisälä frequency

$$\frac{N}{\Omega} = \sqrt{-\frac{f_i R a_F E}{r_i r_o}}$$

Setup

- Numerical dynamo simulations using PARODY-JA Coupled Earth model (Aubert 2013)
- Simple F-layer by imposing a boundary condition on the buoyancy flux at r_f ≡ r_i + d (also impose adiabatic heat flux at CMB)
- ► This introduces a control parameter f_i ≡ F_i/F_f < 0 that controls the strength of stratification in the F-layer...</p>
- ...and corresponds with the Brunt-Väisälä frequency

$$\frac{N}{\Omega} = \sqrt{-\frac{f_i R a_F E}{r_i r_o}}$$

► A rough estimate using the P-wave speed from seismology (and equation of state from PREM) gives $N/\Omega = 13$ for the F-layer

Setup

- Numerical dynamo simulations using PARODY-JA Coupled Earth model (Aubert 2013)
- Simple F-layer by imposing a boundary condition on the buoyancy flux at r_f ≡ r_i + d (also impose adiabatic heat flux at CMB)
- ► This introduces a control parameter f_i ≡ F_i/F_f < 0 that controls the strength of stratification in the F-layer...</p>
- ...and corresponds with the Brunt-Väisälä frequency

$$\frac{N}{\Omega} = \sqrt{-\frac{f_i R a_F E}{r_i r_o}}$$

► A rough estimate using the P-wave speed from seismology (and equation of state from PREM) gives $N/\Omega = 13$ for the F-layer

Parameters and diagnostics

 Reference case has an IC radius equal to r_f to preserve the total buoyancy power to provide a like-for-like comparison

Parameters and diagnostics

- Reference case has an IC radius equal to r_f to preserve the total buoyancy power to provide a like-for-like comparison
- Fix d = 360 km and vary $0 < N/\Omega < 14.7$

Parameters and diagnostics

- Reference case has an IC radius equal to r_f to preserve the total buoyancy power to provide a like-for-like comparison
- Fix d = 360 km and vary $0 < N/\Omega < 14.7$
- ▶ Polar magnetic minima (Cao et al. 2018)

$$R_{\mathrm{NP/SP}} \equiv rac{|\mathrm{d}B_r|}{|B_r^{\mathrm{max}}|} = rac{|B_r^{\mathrm{pole}} - B_r^{\mathrm{max}}|}{|B_r^{\mathrm{max}}|}$$

Parameters and diagnostics

- Reference case has an IC radius equal to r_f to preserve the total buoyancy power to provide a like-for-like comparison
- Fix d = 360 km and vary $0 < N/\Omega < 14.7$
- ▶ Polar magnetic minima (Cao et al. 2018)

$$R_{\mathrm{NP/SP}} \equiv rac{|\mathrm{d}B_r|}{|B_r^{\mathrm{max}}|} = rac{|B_r^{\mathrm{pole}} - B_r^{\mathrm{max}}|}{|B_r^{\mathrm{max}}|}$$

▶ Present-day CHAOS-6 data gives $R_{\rm NP} = 94\%$ and $R_{\rm SP} = 70\%$

Parameters and diagnostics

- Reference case has an IC radius equal to r_f to preserve the total buoyancy power to provide a like-for-like comparison
- Fix d = 360 km and vary $0 < N/\Omega < 14.7$
- ▶ Polar magnetic minima (Cao et al. 2018)

$$R_{\mathrm{NP/SP}} \equiv rac{|\mathrm{d}B_r|}{|B_r^{\mathrm{max}}|} = rac{|B_r^{\mathrm{pole}} - B_r^{\mathrm{max}}|}{|B_r^{\mathrm{max}}|}$$

▶ Present-day CHAOS-6 data gives $R_{\rm NP} = 94\%$ and $R_{\rm SP} = 70\%$

Table: Simulation parameters $E = 3 \times 10^{-5}$, $Ra_F \equiv RaE^3Pr^{-1} = 2.7 \times 10^{-5}$, Pr = 1 and Pm = 2.5

ds	a _r	fi	N/Ω	$ \overline{\Gamma}/\Gamma_{\max} $	Rm	Λ	$R_{\rm NP}$	$R_{\rm SP}$	t_{run}
0	0.35	-	0	0.6×10^{-2}	965	19.2	86%	72%	1.07
360	0.35	-200	14.7	10.3×10^{-2}	810	19.9	74%	79%	1.15

Meridional cuts

Meridional cuts

 Distinct zonal flow structures and jet detachment

Meridional cuts

- Distinct zonal flow structures and jet detachment
- Poloidal and toroidal field is equipartitioned more evenly

Meridional cuts

- Distinct zonal flow structures and jet detachment
- Poloidal and toroidal field is equipartitioned more evenly
- Weaker lateral codensity gradients at the tangent cylinder

Meridional cuts

- Distinct zonal flow structures and jet detachment
- Poloidal and toroidal field is equipartitioned more evenly
- Weaker lateral codensity gradients at the tangent cylinder
- ► F-layer reduces local shear at the ICB ⇒ conservation of angular momentum increases westward flow at CMB

 B_r at the core surface

Figure: Top: reference case, bottom: F-layer case, left: full resolution, right: truncated to $\ell \leq 13$. Latitude of B_r^{\max} is shifted by $10^\circ \approx 1,000$ km at the Earth's surface, and with larger B_{surf}/B_{deep}

 Consensus on slowdown in P-wave speed at the base of the liquid outer core

- Consensus on slowdown in P-wave speed at the base of the liquid outer core
- A slurry can provide an explanation of how a stably-stratified F-layer can be maintained

- Consensus on slowdown in P-wave speed at the base of the liquid outer core
- A slurry can provide an explanation of how a stably-stratified F-layer can be maintained
- ► Regime diagram shows a slurry is likely when Pe ≥ Le and agrees well with the geophysical constraints

- Consensus on slowdown in P-wave speed at the base of the liquid outer core
- A slurry can provide an explanation of how a stably-stratified F-layer can be maintained
- ► Regime diagram shows a slurry is likely when Pe ≥ Le and agrees well with the geophysical constraints
- Can we further elucidate conditions of the slurry F-layer with improving seismic observations?

- Consensus on slowdown in P-wave speed at the base of the liquid outer core
- A slurry can provide an explanation of how a stably-stratified F-layer can be maintained
- ► Regime diagram shows a slurry is likely when Pe ≥ Le and agrees well with the geophysical constraints
- Can we further elucidate conditions of the slurry F-layer with improving seismic observations?
- Is a geomagnetic signature of the F-layer detectable in the polar magnetic minima?

- Consensus on slowdown in P-wave speed at the base of the liquid outer core
- A slurry can provide an explanation of how a stably-stratified F-layer can be maintained
- ► Regime diagram shows a slurry is likely when Pe ≥ Le and agrees well with the geophysical constraints
- Can we further elucidate conditions of the slurry F-layer with improving seismic observations?
- Is a geomagnetic signature of the F-layer detectable in the polar magnetic minima?

Thanks for listening!