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What the F-layer?
Seismic observations

Year Event
1953 Bullen alphabetises the structure of the Earth

and names shell “F”

1972-73 King, Cleary & Haddon debunk the early F-
layer

1981 Dziewonski et al. publish PREM

1991 Souriau & Poupinet detect the modern F-layer
with d = 150 km

onwards Many studies support this observation with
150 ≤ d ≤ 400 km
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What the F-layer?
Density structure

▶ There is a discrepancy
between ∆ρmod and ∆ρbod

▶ v2p = K/ρ infers that a
stably-stratified layer exists

▶ How can light elements pass
through the F-layer and out
into the bulk of the liquid core?

▶ Layer cannot be a thermal
boundary layer

Figure: Gubbins et al. (2008)
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What the F-layer?
Possible dynamics

Figure:
Thermochemical layer
on the liquidus
(Gubbins et al. 2008)

Figure: Convective
translation
(Alboussière et al.
2010)

Figure: Slurry layer
(Loper & Roberts
1978, Wong et al.
2018)
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Slurry layer
Model details

▶ Two component (iron and oxygen) two phase (solid and liquid)
system

▶ Formation and transport of solid phase provides a way for light
elements to pass through a stably-stratified layer

▶ Solid fraction is small
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Slurry layer
Governing equations
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Slurry layer
Boundary conditions
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Slurry layer
Geophysical constraints

∆ρmod (kgm−3) ∆ρbod (kgm−3) Qc (TW) Qi (TW)

Maximum 1000 1100 15 2

(Masters &
Gubbins 2003)

(Tkalc̆ić et al.
2009)

(Lay et al. 2008) (Pozzo et al.
2014)

Minimum 600 520± 240 5 > 0

(PREM) (Koper & Dom-
brovskya 2005)

(Lay et al. 2008)



Slurry layer
Results

▶ Assume Stokes’ flow to
infer solid fraction, ϕ,
from solid flux, ȷ̂

▶ Temperature gradient
is ”locked” to the
oxygen gradient via the
liquidus condition

▶ Solid flux is negative
downward towards ICB
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▶ Assume Stokes’ flow to
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from solid flux, ȷ̂

▶ Temperature gradient
is ”locked” to the
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liquidus condition
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Slurry layer
Results

▶ Assume Stokes’ flow to
infer solid fraction, ϕ,
from solid flux, ȷ̂
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Seismic implications
ICB density jump

(kgm−3) High Le Low Le
ρs − ρsl < 140 < 330

∆ρsl
bod > 460 > 269

∆ρobs
bod 280− 1100



Geomagnetic implications
Setup

▶ Numerical dynamo simulations using PARODY-JA Coupled Earth
model (Aubert 2013)

▶ Simple F-layer by imposing a boundary condition on the
buoyancy flux at rf ≡ ri + d (also impose adiabatic heat flux at
CMB)

▶ This introduces a control parameter fi ≡ Fi/Ff < 0 that controls
the strength of stratification in the F-layer...

▶ ...and corresponds with the Brunt-Väisälä frequency

N
Ω

=

√
− fiRaFE

riro

▶ A rough estimate using the P-wave speed from seismology (and
equation of state from PREM) gives N/Ω = 13 for the F-layer
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Geomagnetic implications
Parameters and diagnostics

▶ Reference case has an IC radius equal to rf to preserve the total
buoyancy power to provide a like-for-like comparison

▶ Fix d = 360 km and vary 0 < N/Ω < 14.7

▶ Polar magnetic minima (Cao et al. 2018)

RNP/SP ≡ |dBr|
|Bmax

r |
=

|Bpole
r − Bmax

r |
|Bmax

r |

▶ Present-day CHAOS-6 data gives RNP = 94% and RSP = 70%

Table: Simulation parameters E = 3× 10−5, RaF ≡ RaE3Pr−1 = 2.7× 10−5,
Pr = 1 and Pm = 2.5

ds ar fi N/Ω |Γ/Γmax| Rm Λ RNP RSP trun
0 0.35 − 0 0.6 × 10−2 965 19.2 86% 72% 1.07

360 0.35 −200 14.7 10.3 × 10−2 810 19.9 74% 79% 1.15
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Geomagnetic implications
Meridional cuts

▶ Distinct zonal flow
structures and jet
detachment

▶ Poloidal and toroidal
field is equipartitioned
more evenly

▶ Weaker lateral
codensity gradients at
the tangent cylinder

▶ F-layer reduces local
shear at the ICB ⇒
conservation of
angular momentum
increases westward
flow at CMB
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Geomagnetic implications
Br at the core surface
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Figure: Top: reference case, bottom: F-layer case, left: full resolution, right:
truncated to ℓ ≤ 13. Latitude of Bmax

r is shifted by 10◦ ≈ 1, 000 km at the
Earth’s surface, and with larger Bsurf/Bdeep



Conclusions and further work

▶ Consensus on slowdown in P-wave speed at the base of the
liquid outer core

▶ A slurry can provide an explanation of how a stably-stratified
F-layer can be maintained

▶ Regime diagram shows a slurry is likely when Pe ≳ Le and
agrees well with the geophysical constraints

▶ Can we further elucidate conditions of the slurry F-layer with
improving seismic observations?

▶ Is a geomagnetic signature of the F-layer detectable in the polar
magnetic minima?

Thanks for listening!
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